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Distinguishing cancerous from noncancerous cells through analysis of electrical noise
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Since 1984, electric cell-substrate impedance sensing (ECIS) has been used to monitor cell behavior in tissue
culture and has proven sensitive to cell morphological changes and cell motility. We have taken ECIS mea-
surements on several cultures of noncancerous and cancerous human ovarian surface epithelial cells. By
analyzing the noise in real and imaginary electrical impedance, we demonstrate that it is possible to distinguish
the two cell types purely from the signatures of their electrical noise. Our measures include power-spectral
exponents, Hurst and detrended fluctuation analysis, and estimates of correlation time; principal-component

analysis combines all the measures. The noise from both cancerous and noncancerous cultures shows correla-
tions on many time scales, but these correlations are stronger for the noncancerous cells.
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I. INTRODUCTION

Electrical cell-substrate impedance sensing (ECIS) has
been in use since 1984 [1] to monitor changes in cell cultures
due to spreading or in response to chemical stimuli, infec-
tion, or flow. Applications include studies of cell migration,
barrier function, toxicology, angiogenesis, and apoptosis.
Several papers have noted that impedance fluctuations are
associated with cellular micromotion [2]. However, we are
not aware of any previous work applying statistical tech-
niques to these fluctuations in order to distinguish two dif-
ferent cell types. Here, we demonstrate that measures of the
electrical noise from cultures of cancerous and noncancerous
human ovarian surface epithelial cells distinguish them. We
find that the noise in both cancerous and noncancerous cul-
tures shows correlations on many time scales, but, by all
measures, these correlations are weaker or of shorter dura-
tion in the cancerous cultures.

II. EXPERIMENTAL METHODS

We used the ECIS system to collect micromotion time-
series data, the fluctuations in which are caused by the move-
ments in a confluent layer of live cells. The system can be
modeled as a RC circuit [3-6]. The cells are cultured on a
small gold electrode (5% 107 cm?), which is connected in
series to a 1-M{) resister, an ac signal generator operating at
1 V and 4000 Hz, and finally to a large gold counterelec-
trode (0.15 cm?). This network is connected in parallel to a
lock-in amplifier, and the in-phase and out-of-phase voltages
are collected once a second, from which measurement we
extract time series of resistance and capacitive reactance
[Fig. 1(a)]. In ECIS experiments, the fluctuations in complex
impedance come primarily from changes in intercellular gaps
and in the narrow spaces between the cells and the small
gold electrode [4-6]. A current of about 1 uA is driven
through the sample, and the resulting voltage drop of a few
millivolts across the cell layer has no physiological effect:
this is a noninvasive, in vitro technique. The cell lines used
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were an ovarian cancer line [Sloan-Kettering ovarian
(SKOV3)] and a normal human ovarian surface epithelial
(HOSE) cell line (HOSEI5). These cells were grown in
M199 and MCDB 105 (1:1) (Sigma, St. Louis, MO) supple-
mented with 10% fetal calf serum (Sigma), 2 mM
r-glutamine, 100 units/ml penicillin, and 100 wg/ml strepto-
mycin under 5% CO,, and a 37 °C, high-humidity atmo-
sphere. For ECIS micromotion measurements, cells were
taken from slightly subconfluent cultures 48 h after passage,
and a monodisperse cell suspension was prepared using stan-
dard tissue-culture techniques with trypsin-EDTA. These
suspensions were equilibrated at incubator conditions before
addition to the ECIS electrode wells. Confluent layers were
formed 24 h after inoculation, resulting in a density of
10° cell/cm?.

Figure 1(a) shows a representative 4096-s run (just over
1 h) measuring the real part of the impedance as a function
of time; the example shows a HOSE culture, but, to the eye,
SKOV cultures do not appear very different. While the ex-
ample shows increasing resistance with time, others show a
decrease; at this time scale; there is no evidence for an over-
all trend. We collected, under similar conditions, 18 time
series for HOSE cultures, of which 16 went for 8192 s and
two for 4096 s. Each 8192-s run was split into two halves, so
that effectively we had 34 4096-s runs; however, where ap-
propriate in the analysis below, we discard the second halves
of the longer runs in order to avoid inadvertently introducing
correlations. Similarly, for SKOV cultures we took data in
eight 8192-s runs and ten 4096-s runs, yielding effectively 26
4096-s runs. We numerically differentiated the resistance and
capacitance time series to obtain noise time series for each,
which we normalized to zero mean and unit variance [Fig.

1(b)].

III. STATISTICAL MEASURES OF NOISE

We seek information from the normalized noise series.
The first question to pose is whether the noise can distin-
guish cancerous from noncancerous cultures, but more gen-
erally the measures we extract may be used to test models of
cell micromotion. Broadly, such models may be character-
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FIG. 1. Scheme of data extraction from noise. (a) Time series of resistance for one of the experimental runs. Taking the discrete-time
derivative and normalizing to zero mean and unit variance gives the noise, shown in (b). The power spectrum of noise is shown in (c), using
half-overlapping windows of 512 points in order to reduce scatter. Fits to the first and last 100 frequencies estimate low- and high-frequency
power laws /=% White noise would have appeared frequency independent (a=0). The Fourier transform of the power spectrum gives the
autocorrelation (d), which we fitted to a shifted power-law decay to extract the measure 3. As explained in the text, subtle differences in the
univariate noise distribution (e) (smoothed) discriminate between cancerous and noncancerous micromotion.
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TABLE 1. Power-spectral measures of HOSE (noncancerous) and SKOV (cancerous) resistive and capacitive noise series. Shown are
estimates for 1/f® behavior at high and low frequencies. The means of the a values differ by many standard errors (o/ VN, where o is the
standard deviation), allowing us to distinguish the populations composed of N runs, although not by enough to distinguish reliably a single
HOSE run from a single SKOV. The F test and ¢ test give the probabilities that the variances and means of the distributions of values of «
would differ by as much as or more than they do if the two populations had come from the same Gaussian distribution. KS gives the
probability under the Kolmogorov-Smirnov test that the two populations’ cumulative distributions could differ as much as they do. Small
probabilities indicate that the populations differ; a probability of 0 means <107°. N=34 for HOSE, N=26 for SKOV. In all cases, we apply

the approximate ¢ test for distributions with unequal variances [7].

HOSE SKOV Probability from same distribution

Measure Average o o/ N Average o o/ N F test 1 test KS test
Resistance

Alow 0.991 0.132 0.02 0.800 0.148 0.03 0.54 4.%1076 42x10™

@high 1.58 0.558 0.10 1.09 0.648 0.13 0.42 4.%1073 0.024
Capacitance

Qlow 0.909 0.0988 0.02 0.734 0.131 0.03 0.13 0 9.x107

@high 1.133 0.446 0.08 0.980 0.357 0.07 0.25 0.15 0.37

ized by short- and long-term correlation, so we look at sev-
eral measures for each.

First, the power spectral density [Fig. 1(c)] looks very
much more like “pink noise” than “white noise;” that is, it
shows signs of long-time correlations. A log-log plot of spec-
tral density against frequency f suggests an intensity varying
as f~% in the low-frequency limit. (We discuss below the
extent to which a true white-noise process may mimic pink
noise due to the finite time of a run.) For each run, we split
the 4096 noise amplitudes into half-overlapping windows of
512 s, multiplied by a Hann window, Fourier transformed,
and squared, averaging the resulting spectra in order to re-
duce scatter [7].

As in the example of the figure, some runs show a cross-
over between low- and high-frequency values for «, which
we estimated with least-squares straight-line fits of power at
the first 100 (excluding zero frequency and the very lowest
frequency) and last 100 frequencies (out of 256 nonzero fre-
quencies). In many runs, low- and high-frequency « esti-
mates were equal, within fitting errors. Table I summarizes
the results, giving in the columns labeled “Average” the
means over all HOSE runs or all SKOV runs for the given
measures; the columns labeled “o” give the standard-
deviation estimator for the population of all like runs. The
differences between a values for HOSE and SKOV, both low
and high frequency, exceed several standard errors (or stan-
dard deviations of the mean, o/VN, where o is the standard
deviation and N is the number of runs). Moreover, the Stu-
dent ¢ test and Kolmogorov-Smirnov test show that the
HOSE and SKOV populations differ.' The low-frequency ex-
ponents are more significant. The fact that these measures are

lTypically, the Kolmogorov-Smirnov test is taken to reject the
(null) hypothesis that two populations were drawn from the same
distribution if it yields a probability less than 5%. Three of the four
« measures meet this criterion. As a control test, half of the HOSE
runs were checked against the other half and SKOV against SKOV,
and in every case the a measurements were compatible with the
null hypothesis, as expected.

larger for HOSE than for SKOV suggests a difference in
long-time correlations in micromotion and is consistent with
the hypothesis that noncancerous HOSE cells move in a
more orderly manner than cancerous SKOV cells.

A nonzero a, is indicative of long-time, “fractal” [8],
correlation, but as Rangarajan and Ding [9] point out, relying
on power-law behavior alone can lead to incorrect identifi-
cation of such correlations when none exist. Two related
measures are the Hurst exponent and the exponent of de-
trended fluctuation analysis [8,10-14]; both methods split the
time series of noise into bins of duration 7, then determine
how a measure scales with 7. For the Hurst exponent, one
subtracts the mean from all the data in a bin and character-
izes that bin by its standard deviation S. The series is inte-
grated, and the minimum value subtracted from the maxi-
mum, yielding the range R. For each bin, one records the
ratio R/S and averages over bins of the same size. The pro-
cedure is repeated for successively larger bins (7). A straight-
line fit to a log-log plot of R/S against bin size T reveals a
power law, R/ S~TH where H is the Hurst exponent. De-
trended fluctuation analysis (DFA) runs along similar lines,
but within each bin one subtracts a best-fit line, thus detrend-
ing the data. The data in the bin are then characterized by
standard deviation S~ TP, where D is the DFA exponent.
Table II shows the results; again, with high confidence
(based particularly on Student’s 7 test), we can conclude that
HOSE and SKOV noise come from different distributions.
However, since the means are separated by less than a popu-
lation standard deviation, many runs (of 4096 s) would be
necessary to determine the provenance of one particular cul-
ture.

While «,,,, H, and D were designed to estimate correla-
tions at diverging time scales, short-time correlation is con-
veniently determined from autocorrelation, Fig. 1(d), nor-
malized to unity at zero lag. The lag of the first zero crossing
provides one natural measure of when correlation is lost, but
since autocorrelation curves may sometimes reach very
small, yet positive, plateaus before crossing zero, we also
measured the lag at which the autocorrelation first crosses
1/e. In a model with only short-time correlation, the 1/e
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TABLE II. Additional measures of long-time correlation in the noise time series, Hurst and detrended-

fluctuation exponents. See Table I caption for column descriptions.

HOSE SKOV Probability from same distribution

Measure  Average o al/ \N Average o ol \N F test t test KS test
Resistance

Hurst H 0.770  0.0442 0.008 0.744 0.0876 0.017 3.x107* 0.17 0.099

DFA D 0.854  0.0473 0.008 0.806 0.0793 0.016 0.006 9.8x 1073 0.057
Capacitance

Hurst H 0.792  0.0474 0.008  0.731 0.0886 0.017 9.x10™* 3.1x1073 0.012

DFA D 0.843  0.0479 0.008 0.788  0.0748 0.015 0.017 25%107  34x107°

time estimates the exponential decay time. However, as we
discuss below, we observed significant deviations from ex-
ponential decay, finding better fits to a shifted power-law
decay,

t+tl>_ﬁo. )

(autocorrelation) = (t_
1

We fitted autocorrelation, for lags in the heuristic interval ¢
=1-20 s, using Levenberg-Marquardt least-squares minimi-
zation to this form to find B,. Table III summarizes results
for the two crossings and B; the last distinguishes the popu-
lations of HOSE and SKOV runs only in that the (cancerous)
SKOV population shows much greater scatter in 3, as mea-
sured by the F test. Both crossings vary greatly from run to
run, but the 1/e crossing in resistance and zero crossing in
capacitance distinguish the populations of HOSE and SKOV
experiments at better than the 95% confidence level as mea-
sured by Student’s ¢ test and the Kolmogorov-Smirnov test.
In particular, the averaged measures show shorter crossing
times and steeper descents (8;) for SKOV than for HOSE,
again consistent with the hypothesis that the micromotion of
cancerous cultures is less correlated than that of noncancer-
ous cultures.

With the 14 measures summarized in Tables I-III, each
run of 4096 s can be thought of as a point in a 14-
dimensional space. In such problems, the populations might
separate into two distinct, compact clusters ([15] Sec. 4.2);
while the identification of clusters in high-dimensional
spaces remains an open problem in statistical research, it is
common to use the variance-maximizing principal-
component analysis introduced by Hotelling to project onto
optimal subspaces, usually taken to be two dimensional [16].
Figure 2 plots the first two principal components. While the
plot shows a clear difference between the two populations
consisting of all runs of HOSE and all runs of SKOV, over-
lap between the two clusters makes it difficult to apply the
technique diagnostically. We found this problem to be ge-
neric: an exhaustive examination of pairs of principal com-
ponents (beyond the first two) produced similar plots, with
the two populations usually less distinct in higher-order com-
ponents, while adding or subtracting several measures to the
list of 14 measures did not improve clustering.

Thus far, the noise measures considered have shown that
electrical noise from HOSE and SKOV experiments have, on
average, different correlations, but they do not provide a re-
liable way to determine whether the cells in a single run of
4096 s are HOSE or SKOV. However, from the normalized

TABLE III. Measures of short-time correlation in the noise time series: the lag at which normalized
autocorrelation [see Fig. 1(d)] falls to 1/e, the first zero crossing of autocorrelation, and the exponent B, from
fitting the first few lags with a shifted power law. See the Table I caption for the statistical labels. Of these
measures, the 1/e crossing (in resistance) and the zero crossing (in capacitance) have the greatest significance
in distinguishing the populations; [ is significant only in the sense that the scatter is very much greater for

cancerous SKOV than for noncancerous HOSE.

HOSE SKOV Probability from same distribution

Measure  Average o o/ N Average o o/ N F test t test KS test
Resistance

1/e 6.35 1.76 0.30 491 262 051 0.032 0.020 9.1x1073

Zero 132 88.0 15 111 115 23 0.14 0.44 0.068

Bo 1.18 0.565  0.10 5.11 12.8 250 0. 0.13 0.48
Capacitance

/e 5.77 1.40 0.24 4.40 396 0.78 0. 0.10 6.0x 107

Zero 194 136 23 97.5 111 22 0.29 3.7x1073 8.6X 1073

Bo 1.17 1.16 0.20 1.93 335 0.66 0. 0.28 0.71
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FIG. 2. (Color online) Projection along the first two principal
components of the 14-dimensional space determined by Tables
[-1II. Blue open symbols mark the 34 HOSE runs, red crosses the
26 SKOV experiments. As populations, these two sets are distinct,
but the overlap of clusters makes it difficult to distinguish indi-
vidual runs in this type of projection.

(zero-mean, unit-variance) noise time series of Fig. 1(b), we
can extract a probability distribution of noise amplitudes, as
in Fig. 1(e). Not surprisingly, the distribution is approxi-
mately Gaussian; however, subtle deviations from normal
form do distinguish HOSE from SKOV populations, even in
a single run, if we apply the Kolmogorov-Smirnov test di-
rectly to the noise. This test looks only at distributions of
noise amplitudes, rather than correlations.

To this end, we concatenate the first nine 4096-s HOSE
resistance runs (discarding, for this purpose, the second
halves of the 8192-s runs) to create a HOSE resistance ref-
erence distribution. Similarly, we create a SKOV resistance
reference by concatenating the first nine 4096-s SKOV runs.
Each of the remaining runs is tested against the two resis-
tance reference sets. The same procedure is applied with ca-
pacitance data. In many cases, the Kolmogorov-Smirnov test
does not show a match with either distribution with high
probability, but we can compare the two probabilities: one
typical HOSE run matches the HOSE reference with prob-
ability 0.02 and SKOV with probability 4.7 X 1073, so we
(correctly) identify this run as HOSE based on the ratio of
probabilities. Of 56 tested data sets (none of which went into
the construction of the reference sets), 42 (75%) matched the
correct reference set by this criterion, an outcome that would
happen by chance with probability approximately 1.2
X 107*. We repeated the procedure using a second collection
of four reference sets (HOSE and SKOV, resistance and ca-
pacitance) each constructed from nine runs not used in mak-
ing the first reference sets. Of 64 trials (none used in the new
reference sets), 53 (83%) were identified correctly, with cor-
responding probability 5X 1078, The results from the two
sets of trials are added and summarized in Table IV. We can
reduce percentages of incorrect identifications by insisting on

PHYSICAL REVIEW E 76, 041908 (2007)

TABLE IV. Percentages of correct identifications. The
Kolmogorov-Smirnov test is applied to distributions of noise am-
plitudes against HOSE and SKOV reference sets. Two nonoverlap-
ping choices of reference sets are used; in neither case did any trial
run figure in a reference set against which it was tested. The “aver-
age” column gives percentages weighted by numbers of trials (16
HOSE and 12 SKOV in the first set, 18 HOSE and 14 SKOV in the
second).

First set Second set Average
HOSE capacitance 62.5% 72.2% 67.6%
HOSE resistance 87.5 66.7 76.5
SKOV capacitance 83.3 100 92.3
SKOV resistance 66.7 100 84.6
All resistance 78.6 81.3 80.0
All capacitance 71.4 84.4 78.3
All HOSE 75.0 69.4 72.1
All SKOV 75.0 100 88.5
All 75.0 82.8 79.2

agreement between resistance and capacitance time series;
this lowers the overall incorrect identification rate to 11.7%,
with a correct rate of 70.0% and a “not sure” rate of 18.3%.

Viewed by eye, the kernel-smoothed probability distribu-
tion function of a noise time series looks approximately nor-
mal (Gaussian), although often with outliers; see Fig. 1(e).
Deviations from normality are characterized in part by
kurtosis,” which is larger for HOSE than for SKOV: see
Table V. A possible explanation is that kurtosis here is a
proxy for correlation. Under this hypothesis, two effects
could be at work. First, while all of our runs have the same
number of time steps, Table III shows that SKOV correlation
times are shorter than HOSE correlation times; thus, a
SKOV run could be said to have more independent time
steps than a HOSE run of the same length. The_standard
deviation of the estimator of kurtosis scales as 1/VN, with N
the number of independent samples [22]. The ratios of 18 in
Table V between standard deviations of kurtoses from the
populations of all HOSE and all SKOV imply much too large
a ratio of correlation times (182), but qualitatively they sup-
port the idea of more independent samples in the SKOV
population. However, this first effect would not result in the
observed statistically significant differences in mean kur-
toses. A second possible manifestation of correlation gets to
the heart of why the noise distributions appear approximately
Gaussian: a large number of cells contribute to the overall
measurement of resistance or capacitance. We would expect
a normal distribution in the limit of infinitely many cells;
however, convergence under the central-limit theorem is
nonuniform, with a distribution approaching a Gaussian
slowly in the tails as the number of independent cellular
motions increases. If, as we believe, HOSE motion is more

“Conventions for kurtosis abound. Specifically, we mean the un-
biased estimator g,=k4/ k%, where k; are the Fisher statistics: (see
[22]). Since the quantity estimated by g, is zero for a normal dis-
tribution, it is sometimes referred to as “kurtosis excess.”
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TABLE V. Kurtosis averaged over all runs, standard deviation
of kurtoses, and standard deviation of the means. F-test probabili-
ties for HOSE and SKOV to come from the same distribution were
both <1079; r-test probabilities were 0.022 for resistance and 0.005
for capacitance. The Kolmogorov-Smirnov test gave probability
<107 for resistance and 6 X 10~ for capacitance.

Average a o/\N
HOSE resistance 74.4 173.1 29.7
SKOV resistance 3.00 9.57 1.9
HOSE capacitance 17.6 322 5.5
SKOV capacitance 0.94 1.80 0.35

correlated than SKOV, it would comprise fewer independent
cellular motions and so have a larger kurtosis.

Temporal correlation cannot explain the whole effect: as
we argue in Appendix A, both kurtosis and the Kolmogorov-
Smirnov test appear to be better discriminants than a direct
measure, the 1/e crossing. This suggests that the univariate
noise distribution is more than just a proxy for correlation
time. In Appendix B, we consider whether the observed kur-
tosis could result from spatial correlations® proportional to
the measured temporal correlations and argue that the kurto-
sis effect is too strong and the coupling between kurtosis and
temporal correlation too weak to support this hypothesis.

IV. TWO SIMPLE MODELS

Having motivated and interpreted our measures of noise
in terms of short- and long-time correlations, we now com-
pare our data to the simplest possible discrete-time models,
the binary random walk with persistence [17], displaying
only short-time correlation, and a discrete fractional Brown-
ian motion [9,18], which has correlations on all time scales.
For present purposes, it suffices to consider only the incre-
ments rather than the walks themselves; that is, we compare
to Fig. 1(b), not Fig. 1(a).

First, consider the increments of a discrete random walk
with persistence. Let the increment at time jA¢, where At is
the time step, be x;, drawn from {+1,-1}. Then x;,,=x; with
probability a and x;,;=—x; with probability 1-a; one recov-
ers the usual discrete binary random walk for a=1/2. Since
we think of this process as approximating a continuous one,
and there is no natural way to take the limit A— 0 for anti-
correlated increments, we restrict a to 1/2=a=1. For con-
venience, we set Ar=1. A simple inductive argument shows
that

(xox,) = (2a = 1)" = exp(-n/7), 2)

where the correlation time 7=—1/In(2a—1). For times much
larger than 7, this Markov process looks like an ordinary
binary random walk with a rescaled time, and by the usual
arguments [19], the power spectrum approaches white noise,
i.e., it becomes independent of frequency in the low-

3 . . . .
We will report elsewhere on direct measures of spatial correlation
in micromotion.
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frequency limit. However, for a finite run, the power spec-
trum may mimic correlated (pink) noise even, surprisingly,
for a 7 as short as 4 in a run as long as 4096 s, as in Fig. 3(a).
However, the random noise levels off noticeably at low fre-
quencies, while the experimental data [Fig. 3(b)] appear to
follow a 1/f* power law to the lowest frequencies.” This
supports the presence of correlations at all time scales. The
shortness of the low-frequency plateau in Fig. 3(a) is mis-
leading. To see more of the flat part of the spectrum, finer
frequency resolution is necessary. Taking larger windows, we
can (at least for a run longer than 4096 s) extend the graph
many decades to the left and verify that the spectrum re-
mains flat (white), but at the cost of greater scatter. Figures
3(c) and 3(d) show autocorrelation for random noise and
experimental data with fits to exponential decay (dotted) and
the shifted power law (1) (solid). The two fits fall on top of
one another for the process satisfying (2). That exponential
decay does not approximate the experimental data as well as
the power law corroborates the hypothesis of longer-than-
short-time correlations.

Mandelbrot and van Ness [18] introduce the notion of
fractional Brownian motion with correlations between incre-
ments separated by arbitrary time differences and with a 1/f
power spectrum. Rangarajan and Ding [9] describe a particu-
larly simple way of generating a time series of increments
with such properties: start with a Gaussian-distributed uncor-
related time series {xj}, Fourier transform, multiply by f~%2,
and Fourier transform back. The resulting process has a
Hurst exponent given by

H=(1+a)2. (3)

Determination of the exponents a and H is subject to the
usual numerical vicissitudes, but Rangarajan and Ding argue
that true long-ranged processes should satisfy (3) at least
approximately.

Figure 4 plots fractional discrepancies between (3) and
measured Hurst exponents as functions of measured spectral
exponents a. At the bottom are plotted artificially generated
long-time-correlated data following the prescription of Ran-
garajan and Ding (plotting symbols +); the measured expo-
nents « are always close to the known values, so the mea-
surement errors occur in estimating H. We note a systematic
trend toward larger errors away from a=0.5, but generally
the errors stay small. At the top of the graph (plotting sym-
bols <) are artificially generated random-walk increments
with persistence times ranging from 2 at the left to 7 at the
right. Measured values of a follow the same prescription as
used above, although as noted earlier (Fig. 3), the fits fail for
low frequencies; indeed, every a should be zero. Hurst esti-
mates range from 0.45 to 0.67; the true value in every case
should be 1/2. As discussed by Rangarajan and Ding, the
discrepancies between measured Hurst exponents and those
estimated from measured « are large. In the middle and at
the bottom are plotted our experimental data (HOSE o;
SKOV X). Agreement between the exponents H and « is

*Indeed, our Fig. 3(a) resembles Fig. 6(b) of Ref. [9]. That process
also has no true long-time correlations.
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FIG. 3. Increments of a finite random walk with persistence (left) may mimic certain aspects of the experimental data (right), but with
notable differences. The random process has a=0.8894, so an exponential decay time 7=4.00. The experiment is a typical capacitance-noise
time series of HOSE, with a measured 1/e crossing of 5.7. (a) and (b) show the best-fit lines to the first 100 points (excluding zero and the
lowest frequency) of the power spectrum; both give slopes =—1.0, but the random data level off noticeably at low frequencies, as would be
expected of white noise. Autocorrelation curves (c) and (d) show fits to exponential (dotted line) and shifted power-law (1) (solid) decays.
For the random noise, the two fits fall on top of one another, but for the experimental data, a power law fits better than exponential decay.

generally not as good as for the long-range-correlated pro-
cesses but not so poor as for the short-time-correlated ran-
dom walk. On average, the experimental points lie closer to
the former than to the latter. We interpret this result as sup-
porting the existence of correlations on, at the very least,
many different time scales. A model of cell motion will need
to explain both the short- and long-time correlations we have
observed.

V. APPLICATIONS

We have demonstrated that electrical-noise measurements
on human ovarian surface epithelial cells can distinguish
cancerous and noncancerous cultures. This is not intended as
a diagnostic tool; for one thing, it is easier to distinguish
them under a microscope. We find it is also possible to dis-
tinguish HOSE from SKOV populations based purely on av-
erage electrical resistance or capacitance. Our main focus
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FIG. 4. (Color online) Fractional discrepancies between Hpyeq
given by (3) and measured Hurst exponent as functions of measured
spectral exponent «j,,. Near the bottom, plotted with large + sym-
bols, are artificially generated data with known long-time correla-
tions. At top are generated data (large ¢ ) from random-walk incre-
ments with persistence times ranging from 2 (smaller values of «)
to 7 (larger values). In the middle are experimental results for
HOSE (blue °) and SKOV (red X). Most of the experimental data
look more like the correlated data than the uncorrelated, but a few
overlap with uncorrelated noise; all of these are SKOV.

has rather been on developing statistical tools with which to
test more sophisticated statistical-mechanical models and on
developing a database of characteristics of many different
cell types, for which a single measurement (e.g., average
electrical resistance) will surely be inadequate. The applica-
tion of the ECIS methodology to investigate cell motility in
culture under different environmental conditions may pro-
vide a useful tool in this effort.

Motility of cells in tissue culture has been widely ob-
served and is thought to be an expression of a basic cellular
mechanism involved in numerous physiological and patho-
logical processes, such as morphogenesis, wound healing,
and tumor metastasis. In addition to locomotion, motility
may take the form of membrane ruffling and undulations and
the extension of regions of the cytoplasm in the form of
blebs and lamellipodia. While normal cells exhibit steady
control of their growth rate and motile behavior in response
to cell-substrate and cell-cell interactions, the lack of such
contact inhibition in cancer cells is directly responsible for
their invasive behavior [20]. In an ECIS measurement, as the
cells attach and spread on the electrode surface, the electric
current must flow in the spaces under and between the cells,
as the cell membranes are essentially insulators. In reducing
the area available for current flow, this initial motion causes
a large increase in impedance. This generally peaks a few
hours into the experiment; our data were taken well after the
peak. Subsequent smaller changes in the cell-substrate and
cell-cell interactions due to cell motions cause the impedance
to fluctuate with time. The numerical methods used in this
paper open the way to analyzing impedance fluctuations
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measured by ECIS and may provide information about cel-
lular dynamics such as different behavior between cancerous
and healthy cells.

Our observation of shorter correlation times in cancerous
cultures is consistent with the picture of these cells moving
in a less regulated manner. Now that it has been established
that different cell types generate distinguishable noise pat-
terns, future research in this area will focus on the develop-
ment of realistic models of cellular motility for healthy and
malignant cells.
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APPENDIX A: COMPARING DISCRIMINANTS

We claim no originality to the following elementary ap-
plication of statistics but could not find a textbook discussion
of quite this point. Given two distributions A and B (for
instance, the kurtoses of HOSE data sets and those of
SKOV), assumed to be Gaussian and characterized by means
Mma<pmp and standard deviations o,,0p, there are several
choices of where to place a dividing point x; so as to identify
all x <x, as belonging to population A and all x> x, to popu-
lation B. One natural choice is to pick x, so that the expected
rates of correct identification of the two populations will be
the same, i.e., that x,— u, should be the same multiple of o,
as up—xo is of oy, or

Ma0p+ UpOy

g+ 0p

(A1)

Any other choice will decrease the expected rate of incorrect
identification of one population at the cost of increasing the
other. A second plausible choice is to seek to maximize the
sum of the expected correct identification rates,

1 1 -
Ch==+= erf(u),
2 2 O-A\’z

I 1 -
CB=—+—erf(LgO); (A2)

2 2 O-B\’z

it is easy to show that the separatrix x is then
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[One root maximizes C,+Cp. Note that (A3) reduces to
(ps+mp)/2 when o4=0p.] A third natural choice, maximiz-
ing the product C,Cp, requires numerical solution. Of
course, a more complicated risk function could apply, for
instance in medical diagnosis, where a false negative is much
worse than a false positive.

To compare the predictive values of three of the statistical
measures developed in the text, 1/e crossing from Table III,
kurtosis from Table V, and the Kolmogorov-Smirnov test of
Table IV, we apply the simplest separatrix (A1) to the means
and standard deviations estimated for the first two. [This
choice is motivated by the similar correct-identification per-
centages for HOSE and SKOV populations in Table IV, but
as an alternative to (A2), using the actual data sets gives
comparable answers.] Then the expected correct-
identification rate (A2) for 1/e as a discriminant is 62% and
that for kurtosis 67%. These rates are both lower than the
79% (Table IV) for the Kolmogorov-Smirnov test applied to
the noise distribution, undermining the idea that the devia-
tion of this distribution from normal form is strictly a proxy
for correlation time.

APPENDIX B: KURTOSIS AND CORRELATION LENGTH

In Appendix A, we argued from the data that because 1/e
decay time as a measure of correlation time does not dis-
criminate  HOSE cultures from SKOV as well as the
Kolmogorov-Smirnov test on the noise distributions, the lat-
ter must be more than a proxy for temporal correlation. We
now consider whether spatial correlation, which this experi-
ment does not measure directly,3 might enhance kurtosis by
reducing the number of independent motions responsible for
the measured time series, as discussed in Sec. III.

> (A3)

04— 0p

The resistance or capacitance measured at a given time is
the result of motion involving many cells. If we view the
total signal as the sum of many components, and if each of
these has a nondivergent variance, the central-limit theorem
holds, and we expect approximately a Gaussian distribution,
which we observe [Fig. 1(e)]. As is well known, convergence
under the central-limit theorem as the number of components
n— ¢ is nonuniform, and, for finite n, outliers can affect the
kurtosis. The binomial distribution (for definiteness, with
equal probabilities for individual events +1) provides a fa-
miliar example. Here, kurtosis y,=-2/n {[21], (26.1.20)},
but more generally we would expect y,~n~! for the whole
class of related models. If a spatial correlation length is sup-
posed proportional to the correlation time, 7, then we would
expect n~ 772, since the culture is two dimensional, so that

Yo~ 72

A comparison of average 1/e times from Table III, esti-
mating 7, to average estimated kurtoses from Table V shows
a monotonic increase of kurtosis with 7, as predicted. How-
ever, the increase is very much more rapid than 7%, roughly
7'2, according to these four data points. The very large ratios
of kurtosis between HOSE and SKOV samples (factor of 25
for resistance, 19 for capacitance) for modest increases in
1/e times (29% and 31%) suggest that spatial correlations
are stronger than temporal ones. On the other hand, scatter
plots (for resistance and for capacitance data) of kurtosis
versus 1/e time for the 60 runs show tremendous variation
and no evident trend; only on average do we see monotonic
behavior. This suggests that temporal correlation and kurto-
sis, while both discriminants between HOSE and SKOYV,
may not be strongly coupled.

(B1)

[1] 1. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81,
3761 (1984).

[2] J. H. T. Luong, Anal. Lett. 36, 3147 (2003).

[3]I. Giaever and C. R. Keese, Physica D 38, 128 (1989).

[4] 1. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 88,
7896 (1991).

[5] C.-M. Lo, C. R. Keese, and I. Giaever, Exp. Cell Res. 204,
102 (1993).

[6] C.-M. Lo, C. R. Keese, and 1. Giaever, Biophys. J. 69, 2800
(1995).

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in C: The Art of Scientific Computing,
2nd, corrected ed. (Cambridge University Press, Cambridge,
UK., 1994).

[8]J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Frac-

tal Physiology (Oxford University Press, New York, 1994).
[9] G. Rangarajan and M. Ding, Phys. Rev. E 61, 4991 (2000).
[10] B. B. Mandelbrot and J. R. Wallis, Water Resour. Res. 5, 321
(1969).
[11] J. Feder, Fractals (Oxford University Press, New York, 1988).
[12] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stan-
ley, and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994).
[13] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger,
Chaos 5, 82 (1995).

[14] A. Goldberger, A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng,
and H. E. Stanley, Circulation 101, €215 (2000).

[15] M. Lewicki, Network Comput. Neural Syst. 9, R53 (1998).

[16] H. Hotelling, J. Educ. Psychol. 24, 417 (1933).

[17] R. Fiirth, Z. Phys. 2, 244 (1920).

041908-9



LOVELADY et al. PHYSICAL REVIEW E 76, 041908 (2007)

[18] B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422 [21] Handbook of Mathematical ~Functions, edited by M.

(1968). Abramowitz and I. A. Stegun (Dover, New York, 1972).
[19] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed. [22] E. Keeping, Introduction to Statistical Inference (van Nos-
(John Wiley and Sons, New York, 1998). trand, Princeton, NJ, 1962; republished Dover, New York,
[20] D. Hanahan and R. A. Weinberg, Cell 100, 57 (2000). 1995).

041908-10



